
N

aI

The Design and Implementation of a
Special Purpose Cache for

the Roll Back Chip

Narayana S. Mani Surya Mantha

DTIC 17 October 1988

AN 26 1989

1ApprOVed O

Distziiution Unli.ited

1 U560

Abstract

The Roll-back chip is an integral part of a special purpose simulation engine
based on the Time-Warp mechanism. The RBC is in the critical path of the
system and the roll-back processor should not have to access the memory in
performing critical operations. We describe the design and implementation
(in VLSI) of a special purpose cache that stores the most recently accessed
data and performs certain operations on it. -

Contents

1 Introduction 1
1.1 The Problem 1
1.2 What is Distributed Simulation? 1
1.3 The Time-Warp Mechanism and the Roll Back Chip 2

2 Functional Description of the Cache 5
2.1 Internal Structure 5

2.1.1 Fields in a Row of the Cache 5
2.2 Operations on the Cache 6

3 Implementation 7
3.1 Simulation and Testing 7
3.2 Statistics 8

4 Conclusion 9

Accesion For j
NTIS CRAM J
DTIC TA6
Unarvm .vced [

Jv.,? 'tiy Co- es

'Dist orDiS' 1 , ':;,,,l

I II l i I IlIIIII " -1 I_

Chapter 1

Introduction

1.1 The Problem

Computer Simulation of large, complex systems remains a major stumbling
block in many research and development efforts today. The need for high
performance, coupled with the parallelism inherent in many of the systems
being modeled, has made the execution of simulation programs on a parallel
processor an area of considerable interest.

1.2 What is Distributed Simulation?

Distributed Simulation is the execution of discrete simulation programs on
a parallel processor. This requires partitioning the program into distinct
computational units.

The physical system can be visualized as some number of independent,
concurrently executing entities, that is, physical processes that interact in
some fashion. Each physical process is modeled by a separate simulation
program called a logical process. Interactions between physical processes are
modeled by timestamped messages exchanged between the corresponding
logical processes. The timestamp denotes the point in simulated time when
the event occurs in the receiving process. State transitions that only affect
the internal behavior of a physical process can be modeled by the process
sending a message to itself, allowing all events to be modeled as messages.

This simple mapping demonstrates that spatial aspects of the physical

CHAPTER 1. INTRODUCTION 2

system correspond naturally to a parallel simulation program. It is much
more difficult to map temporal aspects however.

1.3 The Time-Warp Mechanism and the Roll
Back Chip

In uniprocessor simulation programs, time in the physical system is mod-
eled by a single global variable holding the current value of simulated time.
Causality is preserved through strict adherence to the rule that events are
processed in nondecreasing timestamp order. This imposes a strict order on
the execution of the program that must be relaxed if parallel execution is to
be exploited.

The following two problems related to simulated time must be addressed
by any distributed simulation program.

1. How can the single global clock variable of uniprocessor simulation
programs be replaced by a distributed clock?

2. How does one ensure that the partial ordering of events imposed by
causality in the physical system are not violated by the distributed
simulator?

The first problem can be solved in two ways. In the first method, a global
clock process is used to ensure that all logical processes advance together
in lock step. The global clock process repeatedly waits until all activity
has ceased in the current timestep and then broadcasts a message allowing
processes to advance to the next timestep.

There are a lot of conservative approaches proposed in the literature in
which processes cautiously advance their clocks only when they are absolutely
certain that this will not violate any causality constraint. We propose the
use of the Time Warp scheme that takes a more liberal viewpoint and
allows processes to progress as rapidly as possible, sometimes resulting in an
incorrect state. On the occurrence of such an error, the computation rolls
back in simulated time to a point before the error.

Let us consider an example to illustrate the above. Suppose, that a
secretary takes orders from her three bosses A B and C. She gets messages
from A and B that she perform certain tasks for them at time t, and tb

CHAPTER 1. 1NTRODUCTION 3

respectively, which she carries out one after the other immediately. She
assumes that she is not going to get & msage from C before t. ort b. But
if some time later, she gets a message from C to perform a task t. which is
before t. or 4, she is in trouble since this task could have affected the tasks
she did. Thus this task is in conflict with the earlier tasks. She has to undo
all the tasks and redo them according to the new specifications. Due to this
problem she needed to save a file for each task performed so that when she
got a messge like the one from boss C, she would just open up the old files
she saved and redo the tasks.

In this example, the last order corresponds to the arrival of a message at
a process with a timestamp less than that of the last message processed by
the process. The undoing of the tasks corresponds to the roll back in the
computation that we discussed above.

Rollbacks per se do not represent a serious liability because, a rolled back
computation represents time a conservative algorithm would spend blocking
the process. However, the state of each process must occasionally be saved
regardless of whether or not rollbacks actually occur. State saving overheads
are serious and will cripple simulation programs containing large amounts
of state. For example, more than a megabyte is required to hold terrain
information in large simulations of battlefield scenarios.

No viable software based approach exists to deal with the state saving
problem. Current implementations of Time Warp save the entire state of each
process after each event. This is clearly infeasible for programs containing a
lot of state. Infrequent state saving can reduce this overhead somewhat, but
at the cost of severely reducing the efficiency of the rollback mechanism.

The use of special purpose hardware to attack this problem has been
proposed by Fujimoto and Gopalakrishnan[?]. A component called the roll
back chip(RBC) minimizes state saving and state management overheads
in Time Warp. The RBC is a key component of a special purpose, distributed
simulation engine (USE: Utah Simulation Engine) that is currently being
investigated. The USE uses a message based multicomputer architecture
that combines conventional microprocessors, memory and communication
coprocessors with application specific IC's.

The Roll-back chip is an integral part of a special purpose simulation
engine based on the Time-Warp mechanism. The RBC is in the critical
path of the system and the roll-back processor should not have to access
the memory in performing critical operations. We describe the design and

CHAPTER 1. INTRODUCTION 4

implementation (in VLSI) of a special purpose cache that store the most
recently accessed data and performs certain operations on it.

Chapter 2

Functional Description of the
Cache

2.1 Internal Structure

The Cache has a decoder that takes an input address and enables one of the
32 entries or rows of the Cache. Each entry or row consists of three main
fields(see Fig 2.1).

2.1.1 Fields in a Row of the Cache

A single row in the Cache has the following fields:

" A: The valid bit is set if that row of the Cache does not hold valid
data.

" WA: This is a five bit field which gives the current Working Area for
line specified by the line field. The least significant four bits are used
to represent the Working Area number and the most significant bit is
an extra precision bit which is used for modulo comparison. This MSB
bit will be referred to as the EP bit.

" MRV: This four bit field gives the frame number of the Most Recent
Version of the line.

5

Valid-on WA-on MRI-en

Input pins

I bI 5 b IItIsI

Valid Working Area M a U
bit 5 bits 4 bits

ad r
a d -wr

a d2- c
a d
adil

output pins

|nit- reset- set- archiue set-
umild valid EPblt wa/mrv

2.1: BLOCK DIAGRAM OF ROLL BACK CACHE

CHAPTER 2. FUNCTIONAL DESCRIPTION OF THE CACHE 6

2.2 Operations on the Cache

The Cache operations are:

* READ: The address input to the decoder selects a particular row.
The read line is set and the field enable selects a particular field. The
output lines get the data. The timing diagram for the read operations
is given in Fig 2.2.

* WRITE: Selected fields of the Cache can be written into.The address
input to the decoder selects a particular row. The write line is set and
the field enable selects a particular field. The input lines have the data
to be written. The timing diagram for write operations is shown in Fig
2.3.

RESET-VALID: This operation is used to internally set the Valid
bit to the result of the comparison:

if (dst < WAIMRV) /*WA includes the extra precision bit */
then Valid a 0;

Here "dst" stands for the value of the data on the WA and MRV input
pins (see Fig 2.4). The timing diagram for this operation is given in
Fig 2.5.

* SET-ARCHIVE: This operation is used to clear the WA and MRV
fields when a line is archived.

if (ova -a WA) /* WA does NOT include extra precision bit */
then WA - 0; !MRV -- 0; /* reset extra precision bit of WA field *,

Here "owa" is the Old Working Area v hich is on the WA input pins
(see Fig 2.6). The timing diagram for this operation is given in Fig 2.7.

* WRITE PRECISION BIT: The write is done on the entire column
of WA Precision bits. This is exactly like an ordinary write except that
the address lines do not matter.

* INIT-VALID: This operation is performed only once at the start
when all the rows in the Cache are invalid. The entire column of Valid
bits is set to 0.

field -enable

read dlg

output Is valid h

2.2: TIMING DIAGRAM FOR BR1AD

addrOoddr5

field-esnablea

write

Input

clock

Input gets latched 11

2.3: TIMING DIAGRAM FOR WRITF

Input

(dst < 110110111) 1wrt0

Ron MH MURbit

(fromonn

decoder) rst nt lc

ualid ualid

If (dit 4 WR/MRII) then Valid -0

2.4 :URLID BIT LOGIC

WR and
MRUJ In

reset - u lid ea1

valid In__ _ _ _ _ _ _ _ _ _ _

clock

writ.

valid bit Is set here

Fig 2.5: TIMING DIAGRAM FOR SETTING UBLID BIT

WA and MRU fields

e11 n en

archlue Rn I cokE-

set -woa/ mru

If (own m- WA11) then WA-a; MRU-O;

Me6 LOGIlC FOR ARCHMEE OPERATION

clock

(owaem WA) gets latched here

set -wa / mru

write _ _ _ _ _ _ _ _ _ _

21:9 TIMING DIAGRM FOR ARCHIDE OPERATION

Chapter 3

Implementation

The Cache circuit has been implemented in 2.0 micron CMOS technology
using PPL(path programmable logic) design tools. Logic simulation
(see Appendix) on the complete circuit has been performed.

The circuit uses a single clock. Great care was applied to minimize the
wiring costs. The inverted clock signal runs down vertically on one side of
the circuit, and medium sized buffers are placed on this main bar wherever
a horizontal branch is required.

Each bit in a row of the Cache was implemented as a D flip-flop with
tristated outputs. One of the most important considerations while designing
the circuit was wiring. The input and output lines have to run through all
the rows of the Cache. We opted for the simplest arrangement where corre-
sponding fields of the rows were directly below one another. This simplified
the layout and also shortened the wires. In doing so, we used up some extra
silicon. Since this is a prototype chip, ease of testing and simplicity were
given priority.

3.1 Simulation and Testing

Using the available tools for logic simulation, the complete circuit was
checked for logical errors. Functional blocks were simulated individually
after they had been designed. Integrating these blocks into the final circuit
required testing them again in the new environment to detect errors in wiring.
Finally, an exhaustive simulation was performed on the final circuit. This is

7

CHAPTER 3. IMPLEMENTATION 8

documented in the appendix.

3.2 Statistics
The specifications of the Cache chip are as follows:

" Technology CMOS, 2.0 micron

" Number of pins 27

" Number of PPL columns 157

" Number of PPL rows 160

" Number of transistors 10,000

" Minimum operating frequency 4.0 Mhz

Chapter 4

Conclusion

The goal of this project was to implement the Cache in VLSI. This is in-
tended to be a prototype chip. The environment in which it will operate
was constantly evolving at the time of writing of this report. In fact, the
specifications of the Cache itself changed as we were implementing it. A
strong case was made in the introduction for the implementation of rollback
capabilities in hardware. As of today, no hardware exists to support rollback
capabilites in distributed simulation environments. Further research on this
topic is underway at the Computer Science department of the University of
Utah.

9J

Bibliography

[1] Richard M.Fujimoto, Ganesh C.Gopalakrisbnan and Jya-Jang Tsai. The
Roll Back Chip: Hardware Support for Distributed Simulation using
Time Warp. Department of Computer Science, University of Utah, Oc-
tober 1987.

10

u

